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Abstract. Let V'(t d ) be the Schwartz space of tempered distributions on the

d-dimensional lattice Zd and L*(t) the adjoint operator of L(t) which has a

formal expression:

L(t) I (a. (t,x) - _ + bi (t,x)--

SI2.....d x OxJ 3

It is proven that the weak solution of a Langevin's equation:

,. dX(t) = dW(t) + L*(t)X(t)dt,

exists uniquely on a generalized functional space on V'(7 d) which is

appropriate for the central limit theorem of lattice valued diffusions.

S Key words and phrases: Weak solution, Langevin's equation, Frechet derivative,

generalized functional space, central limit theorem, lattice valued diffusion.
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,1. Introduction

Recently Deuschel [4] has obtained a fluctuation result for a system of

lattice valued diffusion processes. The result is similar to that for

mean-field interacting diffusion particles [2], [3], [8]. [9]. [15]. [22].

However the identification problem of limit measures he treated leads us

to discuss the uniqueness for weak solutions of the Langevin equation:

dX(t) = dW(t) + L*(t)X(t)dt,

where W(t) is a generalized functional space valued Brownian motion and L*(t)

is the adjoint operator of L(t) which has a formal expression:

*O 2 2  a
L(t) = I ai(t.x)2 -+ . bi(tx) a

The aim of this paper is to find a suitable space TE' of smooth

functionals on the dual nuclear space E' and to solve the Langevin equation on

the dual space 0E" which is appropriate for the central limit theorem of

empirical distributions of the system of lattice valued diffusion processes.

This application is another approach to his problem [4].
N,.

We will proceed to explain the setting: A stochastic process XF(t)

defined on a complete probability space (0.5.P) indexed by elements in T E' is

called a 1 (9E')-process if XF(t) is a real stochastic process for any fixed

F C TE' and X aF+13G (t) = axF(t ) + GX (t) almost surely for each real numbers a.1

and elements of F.C EE' and further E[XF(t)2 ] is continuous on 2E , [10].

XFt) is called continuous if lim E[]XF0t)-XF{ 0 for each F E 2E- Let
• t-,~s

WF(t) be a Wiener Y(TD,)-process such that for any fixed F E) E' WF(t) is a

real continuous Gaussian additive process with mean 0.

e0"P



2

We will prove that a continuous V( E,)-process solution XF(t) for the

following equation uniquely exists in the case where E' is the space V'(7 ) of

tempered distributions on the d-dimensional lattice, (Theorem):

(1.1) dXF(t ) =dWF(t) + XL(t)F(t)dt.

Roughly speaking, if L(t) generates the strongly continuous Kolmogorov4.

evolution operator U(t.s) from 'E' into itself, the unique solution for (1.1)

can be given as follows:

• " t.'X s)ds.XF(t) = Xuct.O)F(O) + WFt) + 10 WL(s)Uct~s)FCd"

We will now begin by giving the precise definitions of the operator L(t)

and the space TE- Let E be a nuclear Frechet space whose topology is defined

by an increasing sequence of Hilbertian sem-norms 11.11 1 11-11.... (11-11

usual let E' be the dual space, Ep the completion of E by the p-th semi-norm

I-1 and E' the dual space of E . Then we have
p p p

E = fl and E' = U E'.
pO p=O p

Let K be a separable Hilbert space with norm 11-11K and F a mapping from E

into K. Then F is said to be E'-Fr~chet differentiable if for every x E E'. we
p

have a bounded linear operator b F(x) from E' into K such that
p p

lim F(x+th) - F(x) = pF(x)(h) in K.
t-4O

Suppose that F is E'-Fr~chet differentiable for every integer p 0 0. Then
p

taking E' = U E' and the strong topology of E' is equivalent to the inductive

% p=O p

limit topology of E'; p=O,1.2..... into account, we have a continuous linear
p

operator DF(x) from E' equipped with the strong topology into K such that for

0
No.

k ~ 'V%



3

any integer p 0. DF(x)(h) = pF(x)(h) for h C E'. Hence, if F is n-times
,P

Ep-Fr~chet differentiable for every integer p 0. we have a continuous
p

n-linear operator DnF(x) from E'xE'x... xE' into K such that the restriction of
n-times

DnF(x) on E'xE'x.. .E' = the n-th E'-Fr~chet derivative nF(x)(1
p p p p p f2''n)

n-time

Ci C E'. Then if F is infinitely many times E'-Fr~chet differentiable for
1ntp

every integer p _ 0. the Hilbert-Schmidt norm

IIID nF(x)ll(p )  0= (lDnF(x)(h~
p ) Ah p ) ,.. ,h(P) )112)1/2

- i1 1 2  ''11 2' - ' n1

is finite for each integer n 1 and p 0. where (h. ) is a G.O.N.S.,
k 2.1

* (complete orthonormal system), in E' [13].
p

From now on, we will often use the conventional notation such that

IIDOF(x)IIH -. IIF(x)IIK.

Let 13(t) be the standard E'-Wiener process such that for any E .E,

<((t).f> is a 1-dimensional Brownian motion, with variance

Z" E[<P(t),f = tilfll 2 where <x,f>, (x C E', C C E) , denotes the canonical

bilinear form on E' x E.

Without loss of generality, we assume P(t) is an E'-valued Wiener process

throughout this paper. [16]. [17].

Definition of L(t). Let A(t,x) and B(t..) be continuous mappings from E'

into itself such that the following conditions are satisfied.

(Hl) There exists a natural number p0 such that A(tx) maps E into E'

B(t.-) maps E' into E' and for each T > 0.

sup V(tx) < and sup IIB(t.x)ll < to,
xCE' xEE' 0

|.t O<t<T O<t T

<-.-

, .0 "1 
r 

% 
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4

where 11-11 denotes the dual norm of E' and I'K(t.x)~ I IIA(t~x)h(O) 112

-Pp j=1 -P

(H2) A(t~x) and B(t~x) are infinitely many times E'-Fr~chet
A p

differentiable for every integer p 0 such that for any T > 0.

sup IID n (tx)II~p) < ~ and sup IDnB(t, x)IIHS < w

O~t(T O~t<T

where IIDA(t,x)lI~p) 2 ( U~A(t~x)(h(P),h(p).,h~) 1)/2 and
n.. i =1 1 1 12 1

IIDnB(t.x)Il(P) II ( ~)(~php)..h~p) )12  1/2
H.S. i 1 1 2 n 0P

12- n=

(H3) For any integer n 0 and any T > 0. there exist X(n,P.T) > 0 and

li ?X (n~p.T) > 0 such that

sup max{IIDkA(t~x)-~DkA(s x)iI~P .IIDkB(t x)-Dksx)I}

0(k<n

(Xl(n.T) I tIXl(n,pT), 0 < s~t < T.

Then for any two times E'-Fr~chet differentiable real valued function F on E
p

for every p 0. we put

(L(t)F)(x) = trace ED i-(x) a[A(t~x) x A(t~x)] + DF(x)(B(t~x)).

where D2F(x) o[A(t~x) x A(t~x)](f 1.f2 ) =D
2F(x)(A(t~x)f1 .A( t,x)E2 ) for any

E E'.

Definition of Space 2E~ We define the space 2 as a collection of all
E-E

real valued functionals F on E' such that F is infinitely many times E'-Frechet
p

differentiable for every integer p 0 and further the space ~E is a complete
a2E.

separable metric space metrized by the following semi-norms:

V~%

% 

r 17.
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'V.. n
IIFII = IIFII F E '

<Np.q~n k=0 p,k'

where p pO. q 0 and n 2 0 are integers and

'lFl( q) = sup e H( )
,,.p.n xCE' H.S.

p
Before proceeding to the discussions of the equation (1.1), we will give some

remarks on Wiener Y(TE.)-Process. Taking the continuities of WF(t) and

2E[WF(t) ] with respect to the parameters t and F into account, we have that

sup E[WF(t)2 ] < - and sup E[WF(t) 2] is lower semi-continuous on T Since
O(t(T O<t T

' E , is a complete metric space, by the Banach-Steinhaus theorem we have some

positive integers pl.ql and m1 such that

:- -'- (1.2) sup E[WF(t)2 C (T)IIFII2
"-..~t . O(tTlql'ml"

Here and in the sequel, we denote positive constants by Ci or, if

necessary, by Ci(T1.T 2 .... i=1.2,..... in the case where they depend on the

parameters T1, T 2 ...

Now given a functional V t(F) such that it is positive definite quadratic

form on 2E , X WE'' increasing and continuous in t and

sup Vt(F) C2(T) q for some natural numbers p. q and n, we can
0<t<O t (T
construct a 0E,-indexed Gaussian mean-zero continuous process WF(t) with

independent increments and variance V (F) by the Kolmogorov theorem, since
t

Vt(F ) is positive definite quadratic form with respect to (tF), t E [0,0o),

F CE ,  Here t A s = mln {t,s).
-E'

S2. Existence and Uniqueness for solutions of the Langevin equation

Let -sqt(x) be a solution of the following stochastic differential

equation:

40 e' -P -P



6

Ss(x)= x + ft A(t.1 r(x))dP(r) + ftB(r.r (x))dr.

where P(t) is the standard E'-Wiener process. By the assumptions (HI) and

(H2). if p pO and x E E'. then the solution of the above equation is uniquely

obtained by the usual method of successive approximations in E'.
p

We will assume the following condition:

(H4) (L(t)F)(x) and (U(t.s)F)(x) = E[F(ns t(x))] C TE if F E 0E'

Let WF(t) , F E TE be the Wiener V(T E,)-process and L(t) a diffusion

operator defined before. Then we will prove

Proposition 1. Under the assumptions (Hl)-(H4) the continuous V(OE,)-process

solution of (1.1) such that for some O<a<l, E[ IXF(O)j < - is uniquely given

as follows:

""~ ~ W t'~sU tsF s )d s "XF(t) = XU(t,o)F(O ) + WF(t) + fWLsU(t)F(

Proof. Under the assumptions (Hl)-(H4). L(t) is a continuous linear

operator from 2E' into itself and we can get the following lemma which will be

proved later.

Lemma 1. Suppose that the conditions (Hl)-(H4) hold. Then L(t) generates

the Kolmogorov evolution operator U(t.s) from 2 E' into itself such that

(1) U(ts) is a continuous linear operator from T E. into itslef,

(2) for any F E EDE" U(t,s)F is continuous from {(ts); Os~t} into 2E..

(3) U(t.t) = U(s.s) = identity operator,

() d
.tU(t.s)F = U(ts)L(t)F, 0 < s < t on 2E

%(5 d
(5) s (ts)F = -L(s)U(t.s)F. O<s<t. t>0 on TE'

Further for any Integers p2po' q O, n 0. Jil and any T>O and F E TDE" we have

514,

'% %

% %.
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(2.1) IIU(t'.s*)F - U(t,s)FII p C3(T.F'p'qn){t-ti + ]s-sit}
p.q.n 3

0 s.t.s.t °  T.

First we will guarantee the well-definedness of the integral in

Proposition 1 by showing that for any fixed F C E'' WL(s)U(ts)F(s) is

continuous in (ts). Since W F(t) is a Gaussian additive process with mean 0

and variance V (F). we get for any integer n 1.
t

" 2n]n
(2.2) E[IWF(tl) - WF(t2 )1 C4 (T)(Vt (F)-Vt 2(F))n. 0 < t1 ,t2  T.

We choose an integer k 4 such that 2kX(ml,qlT) > 2, where mI and q are the

numbers which appeared in (1.2) and X(ml,qlT) is the number in (H3). For

* 0 < s,t,s',t' < T, the inequalities (2.1) and (2.2) yield, together with (H3),

.(2.3) E JWkL(s)(t.s)F(S' )  WL(s)U(ts)F(S 12k]

_ Cs(T)(V,.(L(s)U(ts)F) - Vs(L(s)U(t,s)F))k

and

"--(2.4) E[( 12k]s

-(-'T)L(s)U.s)F -
t s )F ( S ')2k

S_ 6(T)IIL(s')U(t',s')F - L(s)U(ts)F IIp2k

(CT(T){IIU(t',s')F - U(ts)FII2k + IIU(t' s')F - U(ts)FII2k
Pl.ql.ml+l Pl' qml+2

%+e:-.. 2kX(ml 'ql.T)
.- + is -s l

' "[" 21k (ml' ql'T)

< Cs(T){ It-t' 1k + ls-s Ik + Is'-sl m 1 .

The inequalities (2.3) and (2.4) are sufficient for the condition of the

Kolmogorov-Totoki criterion [24] for continuity in (t.s). Further the

continuity of WLsU(t )L(s)F(S) in (ts) can be proved similarly.

'

L~)~~)~)



Now we will proceed to the proof of the existence of solutions for (1.1).

Taking the relation U(ts)F = F + fIU(T.s)L(T)FdT. the continuity of

WL(s)U(T~s)L(T)F(S) in T, the linearity of W.(s) and the L2-continuity of

W.(s). into account, we have

WL(s)U(t s)F(s) = WL(s)F + s U s)L(r)Fdr

t

W L(s)F(s) + fs WL(s)U(T,s)L(T)F( s)dT,

so that by making use of the continuity of W U(T)in (Ts) again,

we get

(2.5) foWLsU(t)F(s)ds

rtw i t t
f W (st t + s)dT)ds

0 J0L(s)FSs + fO(fsWL(s)U(Ts)LT)F(

- fOWL(s)F ds + JO(fOWL(s)U(T.s)L(T)F (s)ds)d

f S0(WL(F(T) + f0WLsU(sLfTF(s)ds)dr
0.-. =o(L(T) ()(~)()

J.(XL( T)F(T) - XU(O)L(T)F() )dT.

Combining the L2-continuity of XF(O) in the definition of E(eE,)-process and,9 +r] 2]r

the Jensen inequality such that E[IXF(O)J 1a E[IXF(O) ]. we get that

E[IXF(O) 12+a ] is continuous in Hence there exist some positive integers

p2  pOq 2 and m2 such that

WI: 2+a2+a
(2.6) E[IXF(O)12+a] _ C9 1IFII

Therefore the Kolmogorov criterion for continuity, together with the

inequalities (2.1) in Lemma 1 and (2.6), gives the continuity of

XU(TO)L(T)F(O) in T. Thus we get

'p.!

1O e OF

,ii, v,-,-,e- /.%,-,,-,- .- ,
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(2.7) oXu(T.O)L(T)F(O)dT XU(t,O)F(O) - XF(O)-

The equalities (2.5) and (2.7) mean that XF(t) is a solution of the Langevin

equation (1.1).::: 2

Following H. Komatsu [11], we will prove the uniqueness of L -continuous

solutions for the equation (1.1). Let Y1(t.F) and Y2 (t,F) be the two

continuous V(2E,)-process solutions for the equation (1.1). First we remark by

,1 the Baire category theorem that for each T > 0. we have some natural number

P3  P0 ,q3 and m3 such that

2
(2.8) max sup E[Yi(tF) ] Clo(T)IIFII

i=1,2 O<t<T P3 q 3

Define v(t.F) (t,F) Y(t.F). Then for any a > 0, we will prove d

1 2( Tetny , w dt
2

E[v(t,U(a,t)F)2 ] = 0 for t C (O,a]. The inequality (2.8) and the strong

continuity of U(t,s), ((2) in Lemma 1), yield

E[ Iv(s.U(as)F)
2  v(t.U(at)F)

2 ]

s-t

Cll(T.F) E[(V(sU(a's)F)-v(t'U(a't)F))2]1/2, st C (O,a] C [OT].

The inequality (2.8) and the strong continuities of L(t) and U(t,s) imply that

(2.9) lim E[- v ( s 'U (a 't )F )  v(t,U(a~t)F) v(tL(t)U(a,t)F) 12] = 0.
* s-.t

By the strong continuity of U(ts), we get similarly

(2.10) lim E[lv(s '[U(a.s) - U(a,t)]F) - v(t,[U(a,s) - U(a,t)]F)

s-.t

- v(t.L(t)[U(a.s) - U(a.t)]F) 2] = 0.

Since L(t) generates the Kolmogorov evolution operator U(t,s), we have

6
% %- % -V

%-N-._
"
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lm E[Iv(t.L(t)U(a.s)F) - v(t.L(t)U(a.t)F)12] = 0
S-t

lim E[lv(tL(t)U(at)F) + v(t U(a)s) -0U(a.
s-+t s-t40,

so that we get

(2.11) lim E[fv(tL(t)U(a.s)F) + v(t.U(a s)F) -vt.U a,= O.
s tt

Summing up the inequalities (2.9). (2.10) and (2.11), we get the desired

equality claimed before. Hence E[v(t,U(a,t)F) 2] = constant. Then letting t -

0. we have the constant = 0. Taking the equalities E[v(t.U(a,t)F) 2 ] =

E[(v(t.F) + v(t,[U(at) -U(a,a)]F)) 2 ] and lim E[v(t,[U(a,t) - U(a,a)]F)2] = 0,
@ t-4a

, into account, we have E[v(a=F) 2 0 for any a > 0, which implies v(a.F) = 0

4-. almost surely. Thus the proof is completed. 0

§3. Proof of Lemma 1.

Following [19], [20], we will treat the generation problem via stochastic

method.

For any F in !E" we recall the definition of U(t,s):
,',

.., (U(t,s)F)(x) = E[F(rst(x))].

To examine that U(ts) is the evolution operator stated in Lemma 1. we

will check some regularities and integrabilities for s 5 t(x). It is obvious

that if p p PO and x E E'. rs t(x) C E', so that for h C E' . 77 (x+h) C E'
p s t P P4  StP5

* where PS p V P4. Here a V b = max{a.b}. Following Kunita (p. 219 of [12]),

1
we will show that t(T) -(rI (x+-rh) - rs (x)} has a continuous extension

s't T St St

at T = 0 for any st a.s. in E' . This can be proved by appealing the
p5

following Kolmogorov-Totoki criterion for continuity [24].

%
4-,% '
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Lenna 2. For any T>O and any integer j 1, we have

E[lIf st(T ) - fs..t.(T')Il2j] c 12 (T.h)Is-s Ij + It - t' lj+IT-T ' lJ).

'. 0 S,S',t,t',T,T '  T.

Proof. First we will show that following Burkholder's inequality. Let

A(r) be a well measurable random linear operator from E' to E' such that

E[ft k(r) dr] < +-. Then we have

Lemma 3. For any integer j _ 1,

E[lIf tA(r)d[3(r)ll 2p] 2 C 1dr)J].

Proof. Let (.") be the inner product in E' such that

(x.X) = 11x× 2 o . Setting O(x) = (x.x)PO and y(t) = ftA(r)dp(r) and applying

the Ito formula. (Kuo [14]). for 0(y(t)), we get

2j 1[ft 2
(3.1) E[lly(t)l ] -E trace D 0(y(r))o[A(r)xA(r)]dr]

- !E[fs .2 {2 j(j-l)(y(r),A(r)h, )2 Ip 1y(r)II2_P 2

+ 2JIlA(r)h(O) ll2poly(r) I 2p- 1 )}dr]

* -p0

,- -po

* By Holder's inequality and the martingale inequality, the right hand side of

(3.1) is dominated by

(J+2j(j-l))E[ sup ly(r)l 2 j  J-I/J E[(ft IK(r) dr)i] / j

s~r~t Po s

-'

Ox % . % %" ~ %~ '
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t,¢~~ ~ 2j2_j){2j/{2j-l ))CJ- )EFIly(t),2p]-/ E["(ft m(r) Cdr) J I j

which completes the proof of Lemma 3. 0

Now for the convenience of notations we will write dt = d%0Ct).

d3(t) = d131 (t) , Ao(t.x) = B(t,x), Ai(t,x) = A(t,x), un-m0=l-ll_ 0 and III-"=' 12"

Without loss of generality, we may assume 0 s ( s' < t < t' T. Then

f s.t(T) s'.t(r) is a sum of the following terms:

(3.2) fs (

k

'-' where fs r(T 'y) = r/s r(x) + Y(1s. rx+Th) - i~s r(x)) "

',%(3.3) Y. ft, (DA.rCr rT,y))(f s r))

=""k s'*'s~ ~

• s .r"j
° -DAk(r, Cs', r (T', y) ) (Es,' r (T')) }dy)dpk (r).

By Lemma 3 and the assumption (H2). the expectation of the 2jth power of the

1111 p -norm of (3.2) is dominated by

~,*1
C E[(f I" DArjsr r (s(r))dykdr )J

k s sS sr

'N.. Again using Lemma 3, assumption (H2) and the Gronwall lemma, we have

(3.4) E[IITs  (x)- r s  (y)III2 5 ] < C IIx-yII 2 J x,y E E'
s't s.t -p,5  -16 -p5 ' p5

which implies

(;: 3.5) E[ slif 'l(sr)llI2j 5dr] C C161hl12j5s-.

s s.r -p5  -6 p5

Since the integrand in (3.3)

S2
"-'I, 'r",. ,..... . , . .j%,...,,..5.> .--- , . I ,T'*, 'D'2 - "X,,-''""''''',''''

re... ?.. 2.-..,.2.- -',,'. .. '...,.,-',.",
"-

x,
" .

,% Im.,
.

, . Z -, .. ' , -,.'.. z, N -. ,-,-.,-.,- - -:..,. '..- ' ,, % '
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1 1

+ f8% (f8D Ak(r.s r (TT' y 1 ))(Cs (T.y) - Cs .r (T'y))dyi)(fs. r (T))dy

wher *r (T.T',y) , (r',y) +Y(Cs~ (T.y) - ,. (Ty)), the
wherer1) = + s sr *

M.M k-norm of the integrand is dominated by

(3.6) C 7  s~(T) - , (Tr)II +(IITI (x - 77 (X) 5

17 I (sr s.r -p5  s~r s. p

+ 111 s (X+Th) - 77 *', (X+T'h)I~ )1IfE r(T')ll5 I.

By Lemmra 3 and (3.6). the expectation of the 2j-th power of 11-1 _i -norm of

(3.3) is dominated by

(3.7) C 8 f. E[HE (T) - fs (T) 11 ]dr

s sr ,r -p5  s* p

P+ ft. ,E[ 1IT7 (x-i) - (X 1 4 1Th)If S. (T) [ 1 ('rI ] 1 d}
s s~r 5 r -p5  r _P5 p

Sl (rr s ri (x) r - p

S Akr77t) - Ak(r.T. t'(X'))Ilk C 19 IIri st(x) 77'ti5. ,llp

and taking the expectations of the 2n-th power of both sides of 11-11 -norm of
-p5

the following inequality;

1177 (x) Ti5 17 ,(X'I 111 f sAk(r.T x )d (r)IIP

+ III2 4Ar. 7 .(x'))di9k(r)IIp + 11.2 f .{Ak(r~fs~)r tk r k 5 k s7s x
I? J

.~~ % % '
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Ak(r.T, .r(' )))d 3k(r)lI_

we have, by Lemma 3. similarly

2nE[IInt (x) - s , '(x')1 ]
S't St P5

-%0(T)lt-t' In + Is-s' I + JtE[lr ( ) -Tsr(X')ll-2n]dr).

Noticing that sr (X) = 1 s.r (7ss.(x)) and s..r (*) is independent of 77sis,()

and using (3.4), we get

E110srx ? (X')I 2n % E[lII-q. f- ()I 2ns[Iir r .r -p5  * 77 s' .r -S'](7.s,(x)Edy)

"-'" ~~~P < - (ss'(5 y

PSP" P5P 5

= C E i .s *(x) - xli ]
,.

? -~~ < C22 1 x]2n_ + Is'-s=n),

where P(-) denotes the fundamental probability measure associated with P(t).

Hence we obtain

(3. 8) E[ s t117 ) - s . t,(x' )I <2n C23(T)2nt-t' In+ls-s ' n+lx-x', 2 n
S' s -5 -P5

Combining (3.2), (3.3). (3.4). (3.5). (3.7) and (3.8). we have

. E[If t (T) - fs .(T' ) ]

5 't s -s' I _P IT-T I2  IIh12 ).

C £ 2 (T)IIhII23 (It-t jiJ + Is-s'I + •T T 2 1h12

This completes the proof of Lemma 2.

4'
-~ - V N .. . . . . .

. ~ ~ * ~ *'e % , ' ~ S 4./- %S "i '



Let T tend to 0, we have for each x CE

(3.9) DrTI(x)(h) = h + I f t DA4k(r.n (x)(hi (
Stk s r s)(T'.rx )(h) )dlBk (r).

For the higher order differentiations. the formula similar to (3.9) can be

proved inductively, together with the following lemma.

*Lemma 4. Suppose that a natural number q p 0 and any T > 0. Then for 0

Ss,t.s'.t' T. a natural number j and x.x sh i C E. i=l,2-..n. we have

(3. 10)E[IIE n. (x)(h 1h2 . h )II 2 j] C C(T)IIh 1I
2~i 1h 11 2j ... 11h12JS't 11 '**' n -q 5 1-q 2 -q n -q

(3.11) E[IIDnfl5 (x)(h h2 . .h ) -p ~1 (x')(hl.h 2 ,.. h)I 2 J]

C CIT''It-t Ij + Is-s Ij + Ix-xII12 j} 11h 11I2j 1h 1 2j* .. 11~h 11 2j
261/ -q I -q 21-q n -q

Proof. First we will show (3.10) for the case n=l. By the assumptions

(I) and (H2), we get

so that taking the expectations of 2j-th powers of 11-11II norms of both sides of

(3.9) and using Lemma 3, we get

E'[II (x)hII 2 j' C28'T''IIhII 2 j + ft E[EIINr (x)(h)II 2 j]dr}
L"15  -q~ -q s s,r -

and the Gronwall lemma gives (3.10) for the case where n=1. For n 2. we will

prove the inequality by the Mathematical induction. For h h . h C E'.
112-- n q'

(D~t (x)) (h 11h 2 .'*h) n I ftDn(Ak(r .',(x) ))(hl.h 2 .-h)d~k (r).

Since

(3.12) Dn(Ak(r ,7s r(x)) )(h*h 2 ''.. hn)

%A -0~.S -6 N~p N V
r, W- ,. N AkP AY
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D=~ sTr.rx)bn', s~(x)(h~h 2 --. h)n

+ finite smof terms of the type

n
D 1 (x ( 1 )'..*(DmA k(r,Ts r(x)))(D 7s, r~x (1), (1))~

n1, n
DT) (x)(h (2 .()h h()~ .. m s(x)(hm hj h

21 2

where 2 < m < n, n 1 + n 2 +... +nm = n and 0 n. n-i. so that using the

assumption of the mathematical induction, we get (3.10) by the same argument as

before.

Before proceeding to the proof of (3.11). we notice that for h C E,

1ID7 (x)(h)-Dn5. ~(x')(h)ll is dominated by

(3.13) 2 JifsD(Ak(r, s~x)(h)d~k(r)ll_

+ I 11ft D(Ak(rTs.r )))(h)d (r)IIq

+ I liISt'{D(Ak(r7r? (X) ))(h) - D(Ak(r.71s ()))(h)dpk (r)llq.
k ss r~x

Now, by the assumptions (Hi) and (H2), we have

(3.14) NID(Ak(r.f 77 (x)))(h)D((r. r(x')())tk

IIIDA k(r -fl, (x) )-DA.k(r.T17,. r(X'))(DTr(x) (h)tIk

+ 07s r~Aj~ x)() D71 '(X) '(h)D l (x''

%%

% s- s ,r -q%

%~~. W- q-%



17

Then the same manner as before, together with (3.8). (3.13) and (3.14), leads

us to

s't s ,tx)h-ql

(C3 (T){( It-t ' + Is-s Ij+llxxII,2 j)1hII2j
30 ~-q -

+f tE[ 1D7 x(h)D77 ()(h)Il]dr}.

which gives (3.11) by the Gronwall lemma for the case n=1. By (3.12) and the

estimation of 11) 7 n. S(x)(h 1.h2 ''''h )-D n 77 . (x)(h,h 2 -- h )11_ similar to

that in (3.13), the mathematical induction and the Gronwall lemma yield the

* proof of (3.11) for n 2.

Now we will proceed to the proof of the generation problem of L(t). By

the assumptions (Hi) and (H2), (3.8) and (3.10) of Lemma 4. we may exchange the

order of the differentiation and the integration. Then by the Ito formula

[14]. we have the point wise Kolmogorov forward and backward equations like in

the finite dimensional case (Theorem 1 (page 73) of [7]):

dt
jt d UtsF() (~tsLt x

ds (U(t~s)F) (x) =-(L(s)U(t~s)F) (x).

Let p 0. q 0 and n 0 be integers and x C E'. Since

DP(F(rl7 (x))) (h (q) h (q),..h(q) ) is a finite sum of terms of the type
1 2 n

n n
~(2' (2) ,(1 (q) (q ) (q)....2 m

1~~ 2n2

k-r'N



n, n 1 + n 2 n.. n m = n,

so that noticing the nuclearity of E and (3.10). we have an integer

q > max{p.po,q } such that

(3.15) 2. 11h (q ) 112 . < +_

. .: j - q

and

N 2 22117 s (x)IIq, n

(3.16) E[III 2 ] < IIFi[ . E[e 1 iD 1 s7 t (1x)'h .(1)

21 J2

n

(q) 1 q q q 2

~n
... AID I 17 (x)(hhh I

St t (  ) )' (m) i(m)...... (m) -q

"1 2 2 n

41177 (x) I ]-
C,, < C 11FII2 , Ilh q ) 1 11h (q)112  I..1h(q)11 2  ,E[e S t q 12

-..31 q' .q ,n 11 -q 12 -q. -q

Here we will prove

Lemma 5. For any a > 0 and T > 0. there exists a constant C 32 C32(a.T)

such that

a117s7 (x) II~q ] alixill

sup E[e t - C32 e -q

O<st T

Proof. By (HI) II (x)ll q xIIXIlq +C3 3 +IIfA(r, s,r(x))d3(r)llq,-

Following [8]. it is enough to prove E[exp(IIf taA(r.Tr (x))dP(r)ll_,)J _ Cq.

Ys,t(x) = ' faA(r.T s,r(x))d3(r) , by the Ito formula and the assumptionSettingy (x sr

'' (HI). we get for any integer m 2.
*.4h

(3.17) E[Ily (x q] E[(+lY) ]S, , t -q' s~ )-q')

%

% % Z* . % N%4i-
%p
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Q '" I1 m , l2 , ) 2 a

E[I + t .{2j.(l+1y W)---2  2 ),IX(r'1sr(X))

n2 Go'

+ 4{-1)(1+y s (X)12 .2 a2 ' (y (x).A(r,Tlr (x))hO))}dr]
2-2 11q sr sr

m22 t2 2
< 1 + 2(-) a E[(I+iy (s)1 ,) ]dr.

where C35 = sup N(t-x) . If we use (3.17) recursively. the rest is similar
xEE'

O<t<T

1 to that in [8]. which completes the proof. 0

Therefore (3.15), (3.16) and Lemma 5 yield

.IU(ts)FII C3(T) q , , ts E [O.T].
p,q,n - 36  q n

which implies that U(ts) is a continuous linear operator from 'E' into itself.

By the same reason as in [20]. if we prove the strong continuity of

U(ts)F in (t.s). the pointwise Kolmogorov forward and backward equations imply

that L(t) generates the evolution operator U(ts). Since

IU(ts)F-U(t',s')Fll2i is dominated by a finite sum of terms of the type,.. p,q,n

",i-2j 11x11 n
sup e -P 1. (l)E[IDmF(ns,t(x))(D 1s~ t M

xE' (1) .()I
p 1 2 " m

g.r(q) h(q) h(q) n 2 Cxr(q) h(q) h(q)h. .. 1), h' ,1,.....h 1 (1),. D .,,t (x),. 1 (2 , ... .1 ( ) -h1 2 .-....
" M  (q) h (q) ( )0s t (..m ) . (m ) , D. h (m)) hCs' t. .. s't '

A.D ,jm j(n) h")in - Dm (r 5  ,()( . .

1 2 n
m

* oA~A~~ -~~ :
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1.2 ,. n 2

'-..D m s,,t(x-)(h (q) h(q) h. h(q) ))1j]
.(m)' i(m).i'' iJ 2 inm

m

so that by (3.8). Lemmas 4 and 5 and the nuclearity of E, we have an integer

q > max(p.po,q} such that .Iih ll , < - and we get
j=l -

". '. IIU(t,s)F - U(t'.s')Fll2  < C 11FII2  {jt-t' 13+Is-s' '.}
p.q,n - 37 q '.n+I

,-,', which completes the proof of Lermm 1. 0

"' §4. Generation of the Kolmogorov Evolution Operator

In this Section, we will discuss the assumption (H4). Let K be a

separable Hilbert space. We call a K-valued functional

G(x) = g(1x.f1 >.<x~f2>.(X~f >). f F2 .'fn E E. the smooth functional if

-. n
.[ g(x): 1W -+ K is a C -function, where un is the n-dimensional Euclidean space.

Further we call G(x) a bounded smootb functional if g(x) itself and all the

derivatives of g(x) are bounded. The coefficients A(t.x) and B(tx) are said

to be approximated by sequences of bounded smooth functionals

Am(t.x) = am(t,<X.fI>,<x.f2> ... <Xfk >) and
m

B""x ,b<(xf).xf2  . XEk >) on E' if for any integers, P > P0.

q 0 and n > 0. the following conditions are satisfied:

(1.1) Am(t.x) and Bm(t,x) satisfy the conditions (H1). (H2) and (H3),

(4.2) For any T > 0.

0'%
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Srn sup IKtx)A(tx) = 0.
m-= xEE'~O~t<T

lim sup IIB(t,x)-Bm(t.x)IIp 0 = 0.
m-4c xEE'

O<t<T

rli sup lID kA(t x)-Dk A (tx)II( q ) 0 0. k=l.2,. n
m4- xEE m H.S.

.4 p
O~t(T

~P
.4%

be aweih m xrnsup IDB(tix)-D4Bm(t)x)Ilx x E.S w 0. k=l,2,.in.

In
A real valued smooth functional S a(x) = c(Xl>,<x,2 >. .. >) is said to

be a weighted Schwartz functional If *(x) = h(x) p(x), x E IRn, where 4p(x) is an

Selement of the Schwartz space 9 (I>n) of rapidly decreasing C-functions on n,

n 
__

h(x) = l/g(x). g(x) = 17 gO(x.). gO(x1 ) = exp(-VfI[y~p(xi-Y)dy) and p(x) is

i=1

the Friedrichs mollifier whose support is contained in [-1.1]. Then F re is

said to be approximated by a sequence of weighted Schwartz functionals

EF(X = fm(x fi>,px, m2 >e. .. k ) if for any integer p 0, q fu0 and
m

V im iF%- FO =0.
m p,qn

4. First we will prove

Proposition 2. Suppose that the coefficients A(t~x) and B(t,x) are

approximated by sequences of bounded smooth functionals and also F C E is

'" approximated by a sequence of weighted Schwartz functtonals. Then U(t~s)F(x) =

* E[F(qs (x))] is approximated by a sequence of weighted Schwartz functionals.

% % % %



22[ Proof. We will use the convenient notations such that A0 (t~x) =B(t~x)

and Al(t,x) =A(t.x). For any integers p 0. q 0 and n 0. we choose an

integer q' > rrnx~p~p0 .q) such that

(4.3)~C 
(qIh)112 < **(4.3) 21 -q

-V. since E is a nuclear Fr~chet space. Then by the assumptions, for any 6 > 0 and

Ak (t.x). k=-Ol. there exist bounded smooth functionals

A k(t'x) =a~k(t, (xCl>,(xC 2>,. (,x,C m >), k=-O,l such that

(44) 2 sup II ktx- kt H. .

R£=0 xEE
* 0(t(T

For sufficiently large N. we put

N lt
zX(x) At x x+ dpAk(tN)... Ad)k(tl).

Setting

-() t = xI s (n s, t (x)dPkn)) .. 'k~l'

n=1,2..,N, where t0 =t. by Lemma 3. we have for any x C E'. 0 < s t < T and
0 p

any integer j > 1,

(4.) [ IT7S't () s t ()-q

N 2j-lkE[1(k-l) ')_(k) x12j
+ 2 (2fl[Iz x)z (~I ,
k=2 S~t S't -q

d,2J- N (N) N 2j.+ (2 )E[ 11z _)z (x)II.]
S't s .t -
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. C1 {22 j162 (T+ - 
2 l)k+l1M2jklk+162j/(k+I)!

k=1

+ 2(22J-1 )N+ M2jNTN/N !

< C3 8 {6
2 jexp(22j-1 (MVl )2jT)+2(22j-i )N+lM2 JNTN/N, }.

where M = sup, I i(tnx)Ik K°l k is the convenient notation used before and
xCEp

p
* O(t<T

MV1 = max{M,l}. Hence for any e > 0, if we take sufficiently small 6 and large

N, we have

N 2(6)sup E[117ri~ (x)-z st(x) I2 -q < E.* xCE' St S.t~ x l

P

Next we will verify by the mathematical induction that for any integer m

1 and any 6 ) 0. there exists an integer N(m,&) such that if N 2 N(m,e),

(4.7) E[ IIDmnstr )(j hq "'h~)
,~~)h , i2 -"

1 2 m
D'zN  ) hhq) . hq)]l2 j . < .

s(x)(h 1 2  q

Setting

nN (h(q))Ys,t x  i1

=(q)+ ftN(Ak(tl zNs (q) t N (q)h , (x))(h +f A t2 ,z t2(x))(h

Stn-i " s s k2

... ''+ s DAktt 'Ts t (x))(147 s t (x)(h ) ))dl3 k(tn)) ... )d/3 k(tl),
n Rn tn n

,nN (x)(h (
s,t

:h(q) +.ftD-A(tl~ZNt ()h (q)+FtlD tz N t (x))(h ()SS (x)) iS DAk(t2.z s st

. .. , - .. . 1  1 ' 2

% %,:
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tlq

s Dktn'z s.t n s,t n 1 1  kn)) ~

and 61 C38 {6 2 x(2 2j3 (Ml) 2 T)+2(2 
2J)N+lM2 NrN/N!)} then we hiave

(q)'. N q 2j

EID s~t ()hi1 -zs ,t ()h111 -q

< 2(2j- E[IIN (x)(hi -q)5 :l (x)(h !q))1 -q.

+ (2 2j-12 2..l 1,N (( q)_l iN (( q) )1 2i]
S 1 St 11 -

+ N£ 1 (2 
2 ji l)k+2E[I, k N (x)(h q))_Yk+i. N() )102j,]

k=1 '1

+ (2 2j- l)k+3 E[Ilyk+i.N N()( !)_zl k-e-1 h q )I2s.t )-zt -
2 j -1 N + 2 N N( q ) ) D zN q ) 1 -q ,

+ (22 -1 I~ (x( x(
st 11 t1 1 q

< C39 &2i2 2 j- 1T+(6* )2 iM42 j( 2Ji') 2T

+ N 2{ (2 -1) k6 M~TfkA!
k=1

S2231 )k+3(&. 2iM2ij~T(k+l kl}+ ( 22j1 )N+
2M2jNTN/N!}

*j- { 4  2  (MV1) 3 T(12ji 2j) 2j+ ( 2 N+2M2 jNTN/N!},

which gives (4.7) for m=l. We assume (4.7) holds for integers 1 < m <E(P > 1.

Since D P1(A,1<rrn (x)))hq hq)..h )
k( sr 1 2 e+

DA~k(r~r ()(D R+ 7 (x)(h h') h ) . q)) + finite sum of terms of the
7. r ()s,r I 1 1 21 l

type

V W V%
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u. -*' J ( ) . .. j() •
1•A2 r. h() (q) (. h ( q). h ()

k(s.r s(9'1) 1, 1
2:..;n n2

2() h() ()

1 2 fl2

where 2 < u < +1 n +n +...+n u = h() =1,2.......
1 2" u i i

n

j=1.2,...e+1I} and

D0++I (x)(hq) hq) ..,h)) I t D R (Ak(rD+I (h q)
O 1s't 1 1 2 ' e+1 k s 'ns.r ( x ) ) ) i

h (q),. .,h )dP (r),12

so (4.7) for m > 2 can be proved similarly.

By the assumption for F. for any F' > 0, we have a weighted Schwartz

functional F(x) = f(<xf 1 >,<x.E 2 > . x. fm>) such that

n -Ilxll

k--O sEE',
q

Then to prove Proposition 2. it is enough to show (U(ts)F)(x) is approximated

by weighted Schwartz functionals in 11_11(q), O~k~n. Since
p,k

D k (F( (x))) (h q),h q) .,h(q)) is a finite sum of terms of the type
Y 1 2 k

1(4.9)1'i';'o'h h(q) h(q)i 1 2 . . (q) (T)s ' W ))i

eq i ...

102
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nl h(q) (q k(2n
DUF(ns (x))(D T (x) l ' ), .... () D 7 (x)

S~t s.t (1 1 ~
n1

(h (q) h (q) h (q) nu... . .. x h (q ) h(q) h (q)
(2) j ) 1* ' 1(2) tt t  i(u), ( ) * ' (u

1 j2 n2 1 2 n u

where 0 < u < k and n1+n2+...+nu = k, so that setting
N

(4.9) Jh(zN (x))

h(q) h (q) A(q) s. t

t~x (  s .tx (1) .(I).... 1(1) s t

Jl 2 n 1

UF(q) (q) (q) NN h (q) h(q) D (q)
' jl)' s2) s

(2), J )....'** st () u *(2 h2) )....D zN (x)(h~~ h h~' )

1 2 n2  2n

then we have that (IIU(t,s)F-E[F(z N ()) is dominated by a finite sum of
s t p,k

" terms of the type

-211xII0
(4.10) C40 sup e E[I ((q), (q)  !q) (x))(41)CoxCE' =1 h2 hk ... h

p 1 . .... k i 1 12  ik

II E(q) h(q) ..,h(q) s.t

1 1 i2 k

-211xll co 2117 s  t(x)II , )2ln s h q
-" C4 1{sup e -P I E[e (f') 2 D 1 t (x) ' (q)

xCE' ili 1 -1 ikt
p 2-- k

~I n2
h q(1) . .h (q )  11II 1 2D ,sj t'x)(h (q) h (q )  .h (q )  )[12

(1)......(1) -q' st (2)' (2)..'' .(2) -q'
J2 nI11 n 2

Oi ' ,
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n(q) ( ( q )  2
s.t (u), ,1(u) . .(U) -q

12 n
+, sup e q ,h Eq )  ( q) () t Tx ) ) t2 W)

(N (x)2]

1 1 I .... k

By the manner similar to that in the proofs of (3.10) and Lemma 5, we get

Lemma 6. For any integers q pO' J 1. n 1 and any T > 0, we have

(4.11) E[I Dnz (x)(hl,h2 ...,h)lI

: C4 2 (T)Ilh 1 1I11h 11 1Ih 11 , x h i 1....n C E1-q '2 "

* 0 < s.t < T.

, For any C E and any a > 0 and T > 0. there exists C4 3 = C4 3 (fa,T) such that

"1 (4.12) sup max{E[exp(a-i167 .(x) . E>I)] ' E[exp(rNI <zs. (x), • E>I) )
0 s. t(T Sts ,t

C4,exp(a-Vl<x. P> ).

m
Since f(x) = h(x),p(x) and Ih()(x)l C44 exp( . v'xi---). where h(e)(x)

x() h(x), we get by Lemma 6,

-lxlII
Is- (4.13) sup e -Pmax{E[(IID UF(zN  (x))II ') E[(IID U+F(zN  (x)

xEE' s~t H.S. s t
p

+ T(fls t( X )))ll ) C45 (T). 0 T r <1. 0 s.,t < T.

Hence noticing (3.10), (4.3). (4.13) and Lemma 5. we have some constants C46

tC46
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independent of C, C4 7 = 47(e') and some natural number N such that (4.10) is

dominated by

N 0  E s N 2 s (q)
(4.14) C4 6e + C4 7  ,2E[J (x)-z (x)II 1 t (x)(h ,

~n
h( )h (q )  ) 112  liD u 77 ( )h (q)  h(q) h h(q) )1i2

)........1) q st (u) (u) (u) -q'
2n 2n

u nlzN Ch(q ) h(n)  (q )  2 . nr-l N ,h(q)
+ 2 lID z (x)(h , h ' " -h ) p ...IID z (( r '
r=l st1 q2 in 1rl

r-1 r

~D r zN (x)(h (q) h (q) h (q) )11 2 ID r+1~ 7 x)
s. t .(r), .(r)......(r) -q s t

.- ~ 2 n2JI 2J

r
.(q'-) Dnz x(q) 2h q(q) (q) 212,lIn~

W1, (h(q)  h~q h q)I 112 17 tM(h( u hq hq 12]

(r+l)' (r+l)...... .(r+l) -q st (u), .(u).......'(u) -q
2nr+ I  

u

Therefore noticing (3.10), (4.6), (4.7). (4.10). (4.11) and (4.14) and further

for any e > 0. taking sufficiently small e'. 6 and large N. we obtain

•-Clxll~

sup e -IIIDk((u(t.s)F)(x))-Dk(E[F(z (x))])lI(q) < F.
xEE' 

.

p
SN

The rest is to prove that E[F(ZNs. t(x))] is a weighted Schwartz functional. Of

course E[( t(x))] = st(<X l>,<x,f2>. (<x.f>,<x,[>.<x.C >.... C)
s .t s.t 1 2 e 1 2

is a smooth functional. Without loss of generality, we may assume that i'

1=1,2. .%J, J=1.2. .m, are all distinct elements in E. We will prove

.g(x).s t(x). x E R 0 E V(R +m). For any integer n 0. by the Leibniz

- J%.

'.~.,%,% % %%. N'VN
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formula, it is sufficient to examine the finiteness of

sup (111)I r ~ d # (x)I. for integers Q~r.k~n.

By the expression (4.9)' of Dk(F(zN (x)))(h h .h~~ (4.11) and the

fact that f(x) =h(x) p(x). x E IRe and drj gexm C4ep-I/xl.i is

eog tosothfi ins of_ in _ _

v(4.15) su ~ + ( x.f > 2+ > x,> 2)n exp(- I -,,I <x~f >I - /IX, v' .>1)
Q i=1 .1=1 i=1 J=1

x E[(h(lI)(zN (x))wP(z (xN)))

where Q = {x;((x. 1 >,<xj 2 >. (,xif e >.(x. 1>.<X.[ 2>.,<X*.Cm>) E IR }and

h((x) =( ) 4h(x). p, (x) = ( d) p(x), x E IR

Since jh(P)(x)I C4,exp( I 'N/jx~j), (4.12) of Lemma 6 yields that (4.15)
1~

is dominated by

ei 2 n m(v 4 1/4
(4.16) sup(1 + I (xf> + 2 (x,f > )nexp(- I vI1<x.f >I)E[(wv)(zN (x)))

Q i=i ~ 3=1 5t

e 2 n __2_n

C 5 sup(1+ 2 <X~ i> + I <Xf > )nexp(.. I _______ >

Q i=1 j=1 .1=1

1+ 1(z~ 2n >,)1/4

xE~ ~~ (x),. f I~v(Z ()>1

(1+ 1<z (xf>

IN.
% % %%
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1 ]1/4

(+1<zN W f>2 4

where 11%wl suPe(l+1x1 2) n1P(k XI
XEIR

S' Q~k~n

On the other hand, we can verify the following lemma.

Lemma 7. For any feE... E E and any integer p ,we have

N 10 )ECP ( 1+ 0 s~t < T.

i=l i=

Proof. Setting e(x) =and applying the Ito formula for

(1+ Y,<~
i=l

N
O(z (x)), we get

S . t

(4.17) E e N

i=1

+E ti=l i=l d

[s e1+

-4p~p-l)(lN 2 N2p- <NN

jl(1+ 1 <N . (x).fi

Stt

s 2



1=1 st=1 -r1

e1 F.(N rX.i24dP
i=1

2 e 1
1=1- ss . = )(1+: 11 <z Nz r(X), 2 ))4p

-"" where

By the boundedness of Ak(t x). (4.17) is dominated by

O1 f 5,'t E[(1 ]dr.
(+ (z r(X),fY) p

4..r). UE

'US

~which yields the proof of the lemma, together with the Gronwall lemma.

's.r 2= ss =

Using this lemma, we have that the right hand side of (4.10) is dominated

.€ by

2 m 2n
"e." ~ ~C11pI11 sup (1+i= y" (x' i + j~ ( x,:j>2)nexp(-j~ y" v/Ix,:j>I1)

1 + 2 ( 1xwi22n

i=1 s. r ii=1 s. r

: which guarantees that E[F(Zs (x))] is a weighted Schwartz functional. This

i completes the proof of Proposition 2.
s Now the following remark is immediate.

. Remark. Under the assumptions of Proposition 2. (L(t)F)(x) is also

__ approximated by a sequence of weighted Schwartz functionals.

%I

St

c " "
-

" 1
h-

e "pr"oo U- of Prooiti, 2.
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Then we will proceed to the discussion for a concrete example 5 d We

will begin by giving the definition based on the sequential Schwartz space.

Let Zd be the d-dimensional lattice, i=(il,.i 2. 1d) C Zd and V = 5f(Zd ) the

Schwartz space of rapidly decreasing sequences i = (i.

i .i ( fi ...... i ), metrized by the countably many semi-norms:

dd,": I112 = . (l l l2P 1i 2 ,  p=0.1,2. ... .
p-' i11i 2 -. . id=-f

The dual space V' 9'(Z d ) of Vf is a collection of all slowly increasing

sequences S =(S such that for some integer p 0.

HS 2  (l+Iil)-2 Isil 2 <
0 i1  i 2 .. d..

Let x C m and S(Rm) = {O(x) = h(x)qo(x): E Vf(Rm)). We will define the p-th

semi-norm of S([Rm ) by

,, S sup (1+1x12)Pl(dxk(()(x))"
- xER m

O<k<m

:'- Then S([R) is a nuclear Frechet space metrized by the countably many

S d c
semi-norms. I-IS, p-0,l,2,....[6]. For finite lattice V in Z . (Vf.V) is a

21 ~p0

collection of all functions P(S) such that there exists a weighted Schwartz

function O(x) C S(IRIV d) and (P(S) = O(SIy ) . where Sly means the restriction of

S on V and IVi denotes the number of lattice points in V. We will introduce

the nuclear Frkchet topology on this space by the countably many semi-norms

Ikti = p. p = 0,1.2.

SSCIRIVld) Lewhere I-IS denotes the p-th semi-norm of be a collection

Le0 b' eacleto



33

of all functionals 0(S) such that O(S) = *(SIv) for some finite lattice V in Z

and weighted Schwartz function O(x) E S(pjVId).

Since C o(Y',V) C CO(Y',U) if V C U. setting Vn  [-nn]d we will0 0 n=
-' introduce on CO(S')the strict inductive limit topology of Co(V'Vth oooy 0o n

Since bf(Zd) is a nuclear Fr6chet space, we use the same notations defined

before. For any integers p 0, q 0 and n 0, let T be the completion
p,q,n

. of CO(Y') by the semi-norm 11-11p,q,n

Definition of Space T . We define fl , where p 0 0,i '~~b ( Z[ d  V' ( d = p~q,n pqn

. q 0 and n _> 0. We introduce a topology on T by the countably many". 5" (7d

semi-norms 11-11 p 2 0. q 0 and n 0.Ile p,q.n

Then 0 d becomes a complete separable metric space [6].
Y.f' )

Propositions 1 and 2 yield.

Theorem. Suppose that the coefficients A(t,x) and B(t,x) satisfy the

... conditions (HI)-(H3) and are approximated by sequences of bounded smooth

V.-£ functionals on V'(ird). Then L(t) generates the Kolmogorov evolution operator

odU(t,s) from T(H ) into itself. Further under the same assumption of the

initial value as in Proposition 1, the continuous E(O~d )-process solution

. of (1.1) is uniquely given by

XF(t) = XU(t O)F(O) + WF(t) + fOWL(s)U(ts)F(s)ds.

r- For a real valued functional F(t,S) on Y' such that F(t.S) is infinitely

many times Y' -Fr6chet differentiable with respect to S for every integer p

p
0. we set IFI = sup sup IF(t.S)l and 1F1 = sup sup tDnF(tS)1 P)

-tT SCY' pn OtT S F' H.S.

Let ai(t.S ) , b i (t,S) , i Cd, be real valued mappings defined on Yf' and

o infinitely many times V'-Fr6chet differentiable with respect to S for every
P

lo5
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integer p 0 0. We assume the following conditions:

(AI) We have some natural number pO such that

CO (1+1i1) m x{ai12. lb 12 ) <':':i i 2

1 2. . d

(AII) For any integers n 1 and p 0.

(1+.ii) max{Ila 11 11bi1l < n0.
xp p

(AIII) For any integer n 0 and any T > 0, there exist X 2 (np,T) > 0 and

X 3 (n.p.T) > 0 such that

sup max k (t.S)-ka(s,S )(P) IIDkb(t.S)-Dkb(S)II(P)':'" S¢- H.S .' 'H.S.

O<k<n

Ii~3 )(npT)

X _ 2 (n.p,T)lt-s p

(AIV) a.(t,S). bi(t.S) , iCZ
d are approximated by sequences of real valued

bounded smooth functionals a. (tS), b.m)(t.S). i E d such that

lir sup sup =0a.(t.S)-Dnam)(I i ; H.S. = O

r-4 O(t(T SQP'
-p

li sup sup IIDnb.(t,S)-Dnb m)( t 1,1q ) =0.

m-4co O<t<T SE-Y' 1 H.S.
p

for any integer p pO q 0 and n 0.

Under the assumption (AI), we define a continuous linear operator A(t,S)

dd
i from Y' into itself by A(tS)Y = (a i(t S)Y i),S=(Si), Y=(Yi), i C z . Further

set B(t,S) = (bi(tS)), i C 7 d . Under the conditions (AI)-(AIV), the

coefficients A(t.S) and B(t.S) satisfy the assumptions of the theorem. Then

for the diffusion operator

(L(t)F)(S) = 2 trace 2 d D2F(S)o[A(tS)xA(t.S)] + DF(S)(B(tS)), FC2

.1.

%. .,. ... . ......... ,, - . . . . . . , ,%N0
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we ge t

1%Corollary. Suppose that a I(tS). b I(t.S). i E Zdsatisfy the conditions

(AI)-(AIV). Then L(t) generates the Kolmogorov evolution operator from 2) d

into itself and the same conclusion stated in Theorem holds.

S5. Central limit theorem for a lattice system of Interacting diffusions.

First we begin to explain the system that Deuschel considered [4]. Let

d
b.(S). i E I . be real valued infinitely many times V p-Fr~chet differentiable

mappings on Yf for every integer p 0 such that b .(S) = (E b I S), 0 (S. .)

and b(S) is also real valued mapping onY'

* (VI) We have some natural number p0 such that

CO-2p
0

(liI) (sup lb (S)1)2

(V2) For any integers n > I and p 0.

(V3) There exists a sequence of real valued bounded smooth functionals b M) (S)

such that

lim sup 11 =j S-b' 0
n -0 SCY II .S

p

* .for any integers p po, q O0and n 0.

Let S(t) =(Si(t). I E zd be an !P'(7A)-va'ued solution of the following

equation:

V %-%~."--vV-
%~ % %V

'~.----*%
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(5.1) Si(t) = a i + Bi(t) + ftob(S(s))ds.

bi(S) = b(OiS). eS = (S J) .

where (Bi(t)) are independent copies of the d-dimenslonal standard Brownian

motion B(t) and (ai) are also independent copies of the d-dimensional random

variable c independent of B(t) and for any e > 0. E[exp(eFi(ai)lo)] < )I. For

a finite lattice V E Z d consider

Tv(t) = Iv- /2 2 6 t

iEV i

where 6S denotes the Dirac measure at S in V '. Then we will study the limit

* behavior of Tv(t) after him [4].

Now put

<Uv(t). ,, = <Tv(t).I> - E[<Tv(t).,>]. 0 E COW ) .

where <-.*> is the canonical bilinear form on C0 (V')'xC0 (V'). Then it can be

proved by [17]. [21] that Uv(t) becomes a strongly continuous Co(Y')'-valued
0

stochastic process. We will prove the tightness for Uv(t). V E Z d following

[5], [18], in C([O.w); CO(Y')') which is the space of continuous mappings from
CO

[0,w) into CO(Y')' equipped with the strong topology. Let

O(S) = O(Sn S ..... S ), E C SR d q )" and L0 be an operator such that

(LoF)(S) = 1 tracee2(2d D
2F(S) + DF(S)(b(S)). F E T

where b(S) = (bi(S)).

By the conditions (Vl) and (V2), the equation (5.1) is solved in bf' so.'" PO'

that S(t) E bf' Then we have?- PO

K:?
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00

dpY(, )-process. We denote the extension by TP.V(t).

By the Ito formula, we get

(5.2) <TV(t),4P> - (TV(O).O> = M 'V(t) + So TL t.V(s)ds.
0 0*

where

M".V(t) =v II1/2 J; I :- 4(S (s).S .(s)..,S .s)d .s.
iCV '9n i n 1+i n 2+1 n q+i1 )dni+~)

Noticing the independence of B.(t). i E V and the fact that S(t) E Vf' . we have
1 P0

for t E [0,T],

Then MI() can be extended to a continuous t(T V (d) )-process and has the

same regularities that Wiener V( )-process has. Conditions (V1)-(V3)

guarantee that L 0 belongs to the class dealt in Corollary. We use the same

notation U(t,s) that represents an evolution operator generated by L 0. Thus

the solution of (5.2) is given as follows:

(T.V(t),O = TU(t~O),,V(O) + MO.V(t) + foMU(t)jV(s)d,

by the same manner as in the proof of Proposition 1. Hence by (5.3) and the

* Kolmogorov test for real Wiener process, we get

E[I<U~~ ~ V )U~). C57 lt-sl 2

and further
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E[I<Uv(t)A >12] C58{II1II 12  + sup llU(t.s)l oI 2 3}

VO>t -

which proves the tightness in C([O. );C(f)), [5]. [18]. By the Skorohod

theorem and the usual limiting argument, the limit process N(t) of Uv(t)

satisfies the Langevin equation

(5.4) <N(t)-N(O),O> = W,(t) + fO N~ o(s)ds.
0LO

where NF(t) , F E , V , is the extension of N(t) and WF(t) is a Wiener

Y" (2 d)-process [8].

The uniqueness for solutions of the equation (5.4) discussed in Corollary

*implies the identification of the distribution of the limit process. ([19].

[20]), which implies that Uv(t) converges to a Gaussian field in

C([0,w);.C0(y)
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